Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Branched-Chain Aminotransferases Control TORC1 Signaling in Saccharomyces cerevisiae.

Identifieur interne : 000D40 ( Main/Exploration ); précédent : 000D39; suivant : 000D41

Branched-Chain Aminotransferases Control TORC1 Signaling in Saccharomyces cerevisiae.

Auteurs : Joanne M. Kingsbury [États-Unis] ; Neelam D. Sen [États-Unis] ; Maria E. Cardenas [États-Unis]

Source :

RBID : pubmed:26659116

Descripteurs français

English descriptors

Abstract

The conserved target of rapamycin complex 1 (TORC1) integrates nutrient signals to orchestrate cell growth and proliferation. Leucine availability is conveyed to control TORC1 activity via the leu-tRNA synthetase/EGOC-GTPase module in yeast and mammals, but the mechanisms sensing leucine remain only partially understood. We show here that both leucine and its α-ketoacid metabolite, α-ketoisocaproate, effectively activate the yeast TORC1 kinase via both EGOC GTPase-dependent and -independent mechanisms. Leucine and α-ketoisocaproate are interconverted by ubiquitous branched-chain aminotransferases (BCAT), which in yeast are represented by the mitochondrial and cytosolic enzymes Bat1 and Bat2, respectively. BCAT yeast mutants exhibit severely compromised TORC1 activity, which is partially restored by expression of Bat1 active site mutants, implicating both catalytic and structural roles of BCATs in TORC1 control. We find that Bat1 interacts with branched-chain amino acid metabolic enzymes and, in a leucine-dependent fashion, with the tricarboxylic acid (TCA)-cycle enzyme aconitase. BCAT mutation perturbed TCA-cycle intermediate levels, consistent with a TCA-cycle block, and resulted in low ATP levels, activation of AMPK, and TORC1 inhibition. We propose the biosynthetic capacity of BCAT and its role in forming multicomplex metabolons connecting branched-chain amino acids and TCA-cycle metabolism governs TCA-cycle flux to activate TORC1 signaling. Because mammalian mitochondrial BCAT is known to form a supramolecular branched-chain α-keto acid dehydrogenase enzyme complex that links leucine metabolism to the TCA-cycle, these findings establish a precedent for understanding TORC1 signaling in mammals.

DOI: 10.1371/journal.pgen.1005714
PubMed: 26659116
PubMed Central: PMC4684349


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Branched-Chain Aminotransferases Control TORC1 Signaling in Saccharomyces cerevisiae.</title>
<author>
<name sortKey="Kingsbury, Joanne M" sort="Kingsbury, Joanne M" uniqKey="Kingsbury J" first="Joanne M" last="Kingsbury">Joanne M. Kingsbury</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Sen, Neelam D" sort="Sen, Neelam D" uniqKey="Sen N" first="Neelam D" last="Sen">Neelam D. Sen</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Cardenas, Maria E" sort="Cardenas, Maria E" uniqKey="Cardenas M" first="Maria E" last="Cardenas">Maria E. Cardenas</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:26659116</idno>
<idno type="pmid">26659116</idno>
<idno type="doi">10.1371/journal.pgen.1005714</idno>
<idno type="pmc">PMC4684349</idno>
<idno type="wicri:Area/Main/Corpus">000B39</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000B39</idno>
<idno type="wicri:Area/Main/Curation">000B39</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000B39</idno>
<idno type="wicri:Area/Main/Exploration">000B39</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Branched-Chain Aminotransferases Control TORC1 Signaling in Saccharomyces cerevisiae.</title>
<author>
<name sortKey="Kingsbury, Joanne M" sort="Kingsbury, Joanne M" uniqKey="Kingsbury J" first="Joanne M" last="Kingsbury">Joanne M. Kingsbury</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Sen, Neelam D" sort="Sen, Neelam D" uniqKey="Sen N" first="Neelam D" last="Sen">Neelam D. Sen</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Cardenas, Maria E" sort="Cardenas, Maria E" uniqKey="Cardenas M" first="Maria E" last="Cardenas">Maria E. Cardenas</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PLoS genetics</title>
<idno type="eISSN">1553-7404</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aconitate Hydratase (genetics)</term>
<term>Aconitate Hydratase (metabolism)</term>
<term>Catalytic Domain (MeSH)</term>
<term>Citric Acid Cycle (MeSH)</term>
<term>Keto Acids (metabolism)</term>
<term>Leucine (metabolism)</term>
<term>Mechanistic Target of Rapamycin Complex 1 (MeSH)</term>
<term>Mitochondrial Proteins (genetics)</term>
<term>Mitochondrial Proteins (metabolism)</term>
<term>Multiprotein Complexes (metabolism)</term>
<term>Saccharomyces cerevisiae (enzymology)</term>
<term>Saccharomyces cerevisiae (genetics)</term>
<term>Saccharomyces cerevisiae (metabolism)</term>
<term>Saccharomyces cerevisiae Proteins (genetics)</term>
<term>Saccharomyces cerevisiae Proteins (metabolism)</term>
<term>Signal Transduction (MeSH)</term>
<term>TOR Serine-Threonine Kinases (metabolism)</term>
<term>Transaminases (genetics)</term>
<term>Transaminases (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Aconitate hydratase (génétique)</term>
<term>Aconitate hydratase (métabolisme)</term>
<term>Complexe-1 cible mécanistique de la rapamycine (MeSH)</term>
<term>Complexes multiprotéiques (métabolisme)</term>
<term>Cycle citrique (MeSH)</term>
<term>Cétoacides (métabolisme)</term>
<term>Domaine catalytique (MeSH)</term>
<term>Leucine (métabolisme)</term>
<term>Protéines de Saccharomyces cerevisiae (génétique)</term>
<term>Protéines de Saccharomyces cerevisiae (métabolisme)</term>
<term>Protéines mitochondriales (génétique)</term>
<term>Protéines mitochondriales (métabolisme)</term>
<term>Saccharomyces cerevisiae (enzymologie)</term>
<term>Saccharomyces cerevisiae (génétique)</term>
<term>Saccharomyces cerevisiae (métabolisme)</term>
<term>Sérine-thréonine kinases TOR (métabolisme)</term>
<term>Transaminases (génétique)</term>
<term>Transaminases (métabolisme)</term>
<term>Transduction du signal (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Aconitate Hydratase</term>
<term>Mitochondrial Proteins</term>
<term>Saccharomyces cerevisiae Proteins</term>
<term>Transaminases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Aconitate Hydratase</term>
<term>Keto Acids</term>
<term>Leucine</term>
<term>Mitochondrial Proteins</term>
<term>Multiprotein Complexes</term>
<term>Saccharomyces cerevisiae Proteins</term>
<term>TOR Serine-Threonine Kinases</term>
<term>Transaminases</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Aconitate hydratase</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Protéines mitochondriales</term>
<term>Saccharomyces cerevisiae</term>
<term>Transaminases</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Aconitate hydratase</term>
<term>Complexes multiprotéiques</term>
<term>Cétoacides</term>
<term>Leucine</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Protéines mitochondriales</term>
<term>Saccharomyces cerevisiae</term>
<term>Sérine-thréonine kinases TOR</term>
<term>Transaminases</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Catalytic Domain</term>
<term>Citric Acid Cycle</term>
<term>Mechanistic Target of Rapamycin Complex 1</term>
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Complexe-1 cible mécanistique de la rapamycine</term>
<term>Cycle citrique</term>
<term>Domaine catalytique</term>
<term>Transduction du signal</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The conserved target of rapamycin complex 1 (TORC1) integrates nutrient signals to orchestrate cell growth and proliferation. Leucine availability is conveyed to control TORC1 activity via the leu-tRNA synthetase/EGOC-GTPase module in yeast and mammals, but the mechanisms sensing leucine remain only partially understood. We show here that both leucine and its α-ketoacid metabolite, α-ketoisocaproate, effectively activate the yeast TORC1 kinase via both EGOC GTPase-dependent and -independent mechanisms. Leucine and α-ketoisocaproate are interconverted by ubiquitous branched-chain aminotransferases (BCAT), which in yeast are represented by the mitochondrial and cytosolic enzymes Bat1 and Bat2, respectively. BCAT yeast mutants exhibit severely compromised TORC1 activity, which is partially restored by expression of Bat1 active site mutants, implicating both catalytic and structural roles of BCATs in TORC1 control. We find that Bat1 interacts with branched-chain amino acid metabolic enzymes and, in a leucine-dependent fashion, with the tricarboxylic acid (TCA)-cycle enzyme aconitase. BCAT mutation perturbed TCA-cycle intermediate levels, consistent with a TCA-cycle block, and resulted in low ATP levels, activation of AMPK, and TORC1 inhibition. We propose the biosynthetic capacity of BCAT and its role in forming multicomplex metabolons connecting branched-chain amino acids and TCA-cycle metabolism governs TCA-cycle flux to activate TORC1 signaling. Because mammalian mitochondrial BCAT is known to form a supramolecular branched-chain α-keto acid dehydrogenase enzyme complex that links leucine metabolism to the TCA-cycle, these findings establish a precedent for understanding TORC1 signaling in mammals. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">26659116</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>07</Month>
<Day>06</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1553-7404</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>11</Volume>
<Issue>12</Issue>
<PubDate>
<Year>2015</Year>
<Month>Dec</Month>
</PubDate>
</JournalIssue>
<Title>PLoS genetics</Title>
<ISOAbbreviation>PLoS Genet</ISOAbbreviation>
</Journal>
<ArticleTitle>Branched-Chain Aminotransferases Control TORC1 Signaling in Saccharomyces cerevisiae.</ArticleTitle>
<Pagination>
<MedlinePgn>e1005714</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pgen.1005714</ELocationID>
<Abstract>
<AbstractText>The conserved target of rapamycin complex 1 (TORC1) integrates nutrient signals to orchestrate cell growth and proliferation. Leucine availability is conveyed to control TORC1 activity via the leu-tRNA synthetase/EGOC-GTPase module in yeast and mammals, but the mechanisms sensing leucine remain only partially understood. We show here that both leucine and its α-ketoacid metabolite, α-ketoisocaproate, effectively activate the yeast TORC1 kinase via both EGOC GTPase-dependent and -independent mechanisms. Leucine and α-ketoisocaproate are interconverted by ubiquitous branched-chain aminotransferases (BCAT), which in yeast are represented by the mitochondrial and cytosolic enzymes Bat1 and Bat2, respectively. BCAT yeast mutants exhibit severely compromised TORC1 activity, which is partially restored by expression of Bat1 active site mutants, implicating both catalytic and structural roles of BCATs in TORC1 control. We find that Bat1 interacts with branched-chain amino acid metabolic enzymes and, in a leucine-dependent fashion, with the tricarboxylic acid (TCA)-cycle enzyme aconitase. BCAT mutation perturbed TCA-cycle intermediate levels, consistent with a TCA-cycle block, and resulted in low ATP levels, activation of AMPK, and TORC1 inhibition. We propose the biosynthetic capacity of BCAT and its role in forming multicomplex metabolons connecting branched-chain amino acids and TCA-cycle metabolism governs TCA-cycle flux to activate TORC1 signaling. Because mammalian mitochondrial BCAT is known to form a supramolecular branched-chain α-keto acid dehydrogenase enzyme complex that links leucine metabolism to the TCA-cycle, these findings establish a precedent for understanding TORC1 signaling in mammals. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Kingsbury</LastName>
<ForeName>Joanne M</ForeName>
<Initials>JM</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sen</LastName>
<ForeName>Neelam D</ForeName>
<Initials>ND</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cardenas</LastName>
<ForeName>Maria E</ForeName>
<Initials>ME</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 CA154499</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>12</Month>
<Day>11</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS Genet</MedlineTA>
<NlmUniqueID>101239074</NlmUniqueID>
<ISSNLinking>1553-7390</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007651">Keto Acids</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D024101">Mitochondrial Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D046912">Multiprotein Complexes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>816-66-0</RegistryNumber>
<NameOfSubstance UI="C013082">alpha-ketoisocaproic acid</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.6.1.-</RegistryNumber>
<NameOfSubstance UI="D000637">Transaminases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.6.1.42</RegistryNumber>
<NameOfSubstance UI="C101168">BAT1 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.6.1.42</RegistryNumber>
<NameOfSubstance UI="C101127">BAT2 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.1</RegistryNumber>
<NameOfSubstance UI="D058570">TOR Serine-Threonine Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="D000076222">Mechanistic Target of Rapamycin Complex 1</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 4.2.1.3</RegistryNumber>
<NameOfSubstance UI="D000154">Aconitate Hydratase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>GMW67QNF9C</RegistryNumber>
<NameOfSubstance UI="D007930">Leucine</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000154" MajorTopicYN="N">Aconitate Hydratase</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020134" MajorTopicYN="N">Catalytic Domain</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002952" MajorTopicYN="N">Citric Acid Cycle</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007651" MajorTopicYN="N">Keto Acids</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007930" MajorTopicYN="N">Leucine</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000076222" MajorTopicYN="N">Mechanistic Target of Rapamycin Complex 1</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D024101" MajorTopicYN="N">Mitochondrial Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D046912" MajorTopicYN="N">Multiprotein Complexes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="N">Saccharomyces cerevisiae Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="Y">Signal Transduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058570" MajorTopicYN="N">TOR Serine-Threonine Kinases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000637" MajorTopicYN="N">Transaminases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>08</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>11</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>12</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>12</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>7</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26659116</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pgen.1005714</ArticleId>
<ArticleId IdType="pii">PGENETICS-D-15-02009</ArticleId>
<ArticleId IdType="pmc">PMC4684349</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Genes Dev. 1996 Aug 1;10(15):1904-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8756348</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1996 Aug 23;271(34):20242-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8702755</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1996 Oct 4;271(40):24458-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8798704</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1998 Jan 30;14(2):115-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9483801</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 1998 Feb;27(3):643-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9489675</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 2000;328:208-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11075347</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Diabetes. 2001 Feb;50(2):353-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11272147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2001 Apr;57(Pt 4):506-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11264579</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2001 Oct;42(1):215-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11679080</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2001 Nov 2;294(5544):1102-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11691993</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioessays. 2001 Dec;23(12):1112-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11746230</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2002 Feb;22(4):1246-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11809814</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Jul 5;277(27):23977-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11997383</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2003 Mar;62(6):929-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12590120</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 2003 Mar;67(1):1-15, table of contents</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12626680</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2003 Apr 1;17(7):859-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12654728</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2003 Aug 15;116(Pt 16):3423-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12840070</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2003 Aug 5;13(15):1299-305</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12906789</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2003 Nov;50(3):911-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14617151</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2003 Nov 26;115(5):577-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14651849</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Endocrinol Metab. 2004 Jan;286(1):E64-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12965870</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2004 Mar;10(3):268-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14770177</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Yeast Res. 2004 Oct;5(1):43-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15381121</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2004 Oct 15;18(20):2491-505</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15466158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 1964;14:193-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5836504</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gan. 1977 Oct;68(5):663-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">201538</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 1987;56:567-613</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2956925</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1988 Sep 15;176(2):377-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3138118</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 1998 Apr 1;101(7):1519-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9525995</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 May 26;95(11):6245-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9600950</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol. 1998 Nov;275(5 Pt 1):C1232-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9814971</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 2005 Mar;69(1):79-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15755954</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 May 17;102(20):7215-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15883373</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Nutr. 2005 Jun;135(6 Suppl):1527S-30S</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15930464</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Aug 4;281(31):22342-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16740637</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Apr 20;282(16):11893-903</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17314104</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2007 Jun 8;26(5):663-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17560372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 2007 Sep;24(9):767-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17534848</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Oct 23;104(43):16886-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17940006</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2008 Jan 15;47(2):698-709</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18092814</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2008 Mar;4(3):e1000034</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18369453</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2008 Apr;74(8):2259-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18281432</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 2008 May 15;376(2):275-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18355435</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2008 Apr 25;30(2):214-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18439900</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 Jun 13;320(5882):1496-501</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18497260</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2008 Aug;10(8):935-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18604198</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2009 Jun;5(6):e1000515</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19521502</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Jul 21;106(29):12055-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19567830</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Carcinogenesis. 2009 Aug;30(8):1269-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19321800</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2009 Sep 11;35(5):563-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19748353</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Syst Biol. 2009;5:319</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19888214</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2010 Jan 1;285(1):265-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19858196</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2010 Feb;30(4):1049-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19995911</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 2010 Mar;156(Pt 3):929-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20019084</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2010 Jul 1;21(13):2202-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20444979</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurochem Int. 2011 Sep;59(4):518-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21621574</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Nutr Sci Vitaminol (Tokyo). 2004 Feb;50(1):56-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15228219</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comp Neurol. 2004 Sep 27;477(4):360-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15329886</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Signal. 2014;7(333):ra64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25005228</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2014 Jul 4;289(27):18793-804</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24847056</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2003 Jun;11(6):1467-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12820961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biochem. 1988 Nov;104(5):777-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3069843</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1990 Jul;10(7):3551-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1972545</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS J. 2011 Nov;278(21):3978-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21883929</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2011 Nov 4;334(6056):678-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22053050</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Metab. 2011 Nov 2;14(5):707-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22019086</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2012 Mar;190(3):885-929</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22419079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2012 Apr;13(4):251-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22436748</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2012 Mar 30;45(6):743-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22445487</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2012 Apr 13;149(2):410-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22424946</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2012 Apr 13;46(1):105-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22424774</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2012 Jul 27;47(2):242-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22727621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2012 Aug 10;47(3):349-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22749528</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2012 Sep;192(1):73-105</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22964838</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Metab Eng. 2013 Jan;15:48-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23164578</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2013 May;97(10):4429-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23111598</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Signal. 2013 May 28;6(277):ra42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23716719</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2013 May 31;340(6136):1100-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23723238</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteome Res. 2013 Jun 7;12(6):2805-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23647160</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2013 Jul;19(7):901-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23793099</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2013 Nov 21;52(4):495-505</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24095279</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2014 Apr;196(4):1077-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24514902</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2014 Sep 5;289(36):25010-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25063813</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2014 Oct;198(2):773-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25085507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2015 Jan 9;347(6218):188-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25567906</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2015 Jan 9;347(6218):194-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25567907</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2015 Feb 1;26(3):569-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25428989</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Mol Genet. 2015 Mar 15;24(6):1540-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25378554</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2015 Mar 26;519(7544):477-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25561175</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Histopathology. 2016 Mar;68(4):520-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26173071</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1994 Aug 1;220(2):321-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7978274</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1995 Dec 22;270(51):30344-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8530459</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Caroline du Nord</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Caroline du Nord">
<name sortKey="Kingsbury, Joanne M" sort="Kingsbury, Joanne M" uniqKey="Kingsbury J" first="Joanne M" last="Kingsbury">Joanne M. Kingsbury</name>
</region>
<name sortKey="Cardenas, Maria E" sort="Cardenas, Maria E" uniqKey="Cardenas M" first="Maria E" last="Cardenas">Maria E. Cardenas</name>
<name sortKey="Sen, Neelam D" sort="Sen, Neelam D" uniqKey="Sen N" first="Neelam D" last="Sen">Neelam D. Sen</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000D40 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000D40 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:26659116
   |texte=   Branched-Chain Aminotransferases Control TORC1 Signaling in Saccharomyces cerevisiae.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:26659116" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020